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Abstract 

Community detection is a fundamental 

optimization challenge that investigates the 

identification of communities within graph-

structured networks. Although numerous 

algorithms have been proposed for this problem, 

many of them are not scalable to large-scale 

networks and suffer from high computational 

costs. In this paper, we propose a multi-agent 

reinforcement learning (MARL) algorithm for 

community detection in complex networks, 

which demonstrates superior performance 

compared to several well-known baseline 

methods. The proposed approach is evaluated 

using multiple performance metrics, including 

majority accuracy and Nautical mile (NMI), and 

the results indicate strong and competitive 

performance. Interactive network-based methods 

are widely applied across various scientific 

domains, including social sciences and health 

informatics, where they facilitate the analysis of 

behaviors and structural patterns. Furthermore, 

community detection in dynamic networks can 

benefit from reinforcement learning and local 

optimization techniques to effectively manage 

evolving entities. This type of analysis provides a 

more efficient framework for examining 

continuously growing and evolving networks. 

Keywords: Complex networks, Community 

detection, Multi-agent systems, Reinforcement 

learning, Majority accuracy 

Overview  

Recent studies have shown that various systems 

across different domains can be represented as 

complex networks. These networks are typically 

sparse at the global scale while being dense at the 

local scale. Social networks and physical 

connections among routers are examples of such 

complex structures. Community detection in 

these networks is of significant importance, and a 

variety of optimization-based methods have been 

proposed to address this problem. A novel 

approach based on multi-agent reinforcement 

learning for identifying communities in complex 

networks has recently been introduced, 

demonstrating strong capability in community 

detection. Experimental results on different 

networks show that this approach is able to detect 

communities with high accuracy and stability, 

and it is competitive with existing methods. This 

paper covers a review of related work, an 

introduction to multi-agent reinforcement 

learning, a detailed description of the proposed 

method, experimental evaluations, and 

concluding remarks. 

Introduction 

Since ancient times, human civilization has 

sought to discover new and unknown materials, 

such as metals and alloys, all of which can play a 

key role in improving overall quality of life. Since 

the Bronze Age, alloys have traditionally been 

produced according to a “base element” 

paradigm, in which a primary element is 

combined with various additional elements to 

enhance selected properties. In recent decades, a 

new approach to alloy design has been introduced 

that involves mixing typically five or more 

elements to produce compositionally balanced 

alloys known as high-entropy alloys (HEAs). 

Due to their attractive properties—such as high 

thermal and electrical conductivity, excellent 

corrosion resistance, and high strength combined 

with good ductility—HEAs have been 

extensively investigated. The aim of the present 

study is to introduce a new model for a 

lightweight H-beam interaction network 

constructed based on descriptors of lightweight 

H-beams. This model forms a network of 

interactions based on similarity measures, 

quantifying similarities among lightweight H-

beam descriptors. Communities are extracted 

from the interaction network such that each 

community contains similar lightweight H-beam 

compositions. Network analysis is a powerful 

tool that seeks to evaluate target networks from 

various perspectives, including node 

classification, link prediction, and community 

detection (CD). The challenges and opportunities 

associated with classical community detection 

methods—such as spectral clustering and 

statistical inference—are increasingly being 
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addressed by deep learning techniques with 

enhanced capacity to handle high-dimensional 

graph-structured data, achieving remarkable 

performance as reported in recent studies. In the 

context of community detection, communities are 

typically extracted from a given network by 

selecting a scoring function (e.g., modularity) 

that captures the intuition of communities as 

groups of densely connected nodes. 

Subsequently, a method is applied to identify sets 

of nodes that maximize the value of the chosen 

scoring function. This process can follow two 

main directions: agglomerative approaches, in 

which groups of nodes are merged, or divisive 

approaches, in which edges are removed from the 

network and the scoring function is recalculated. 

Within this challenging framework, the central 

hypothesis of this work is that reinforcement 

learning (RL) can serve as an effective approach 

for optimizing modularity in community 

detection solutions applied to dynamic social 

networks. 

Literature Review 

Lightweight H-beams composed of at least five 

elements with equal or near-equal atomic 

percentages exhibit high strength, primarily due 

to four distinct core effects, the understanding of 

which contributes to a deeper insight into the 

physical properties of these alloys. Recent studies 

have demonstrated that machine learning (ML) 

techniques can facilitate the design and prediction 

of material properties in lightweight H-beam 

systems. In addition, community detection and 

network analysis methods have been employed to 

investigate the complex characteristics of 

lightweight H-beam compositions. These 

approaches have shown significant potential in 

identifying structural patterns and key features, 

reflecting important advancements in this field. 

Related Work 

Community detection in complex networks has 

attracted significant attention from researchers. 

Community detection methods can generally be 

classified into five categories: conventional 

algorithms, hierarchical algorithms, majority-

based algorithms, spectral algorithms, and 

dynamic algorithms. Among these, hierarchical 

algorithms are more widely used. In divisive 

methods, edges that connect different 

communities are identified and removed. In 

contrast, agglomerative methods employ a 

bottom-up strategy to identify communities by 

progressively merging nodes or groups of nodes. 

Several other algorithms have also been proposed 

for community detection, each with its own 

advantages and limitations. The use of majority-

based concepts has produced favorable results in 

community detection by improving algorithmic 

efficiency. In addition, genetic algorithms and 

other artificial intelligence techniques have been 

applied for this purpose. However, the algorithms 

employed must carefully consider network 

topology and specific environmental conditions 

in order to produce accurate results. Recent 

studies have enhanced these approaches through 

the use of reinforcement learning and neural 

networks. 

Preliminaries 

This section presents some fundamental aspects 

related to community detection, along with key 

concepts and artificial intelligence techniques 

relevant to this field. 

Community Detection Concepts 

In a graph consisting of nodes and edges, 

communities are formed by nodes that are 

densely connected to each other while 

maintaining sparser connections with the rest of 

the graph. Identifying communities within a 

graph helps reveal its internal structure and 

provides a means to describe the entities that 

constitute these communities. In a dynamic 

network, the network ( G ) can be examined at 

each time point. Modularity is a widely used 

criterion for evaluating the quality of community 

detection in a network. Using a specific 

formulation, the degree of organization and the 

internal connectivity of communities within a 

graph can be quantified. The measure ( Q_{ds} ) 

has been introduced to extend this concept and to 

address the limitations of the traditional 

modularity measure ( Q ). 

Proposed Solutions 

1.  

The first proposed solution employs a 

reinforcement learning–based approach to 

optimize both the algorithms and their parameters 

for modularity-based community detection in a 

dynamic network. This approach builds upon 
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existing modularity-based community detection 

methods, such as eigenvector-based techniques, 

random walk methods, label propagation, and 

multilevel algorithms. In the proposed 

reinforcement learning framework, the Q-

learning algorithm is used to store combinations 

of algorithms and their corresponding 

parameters. The improvement in the network 

architecture score is utilized as a reward signal 

and incorporated into the Q-matrix. Within this 

framework, iterative reinforcement learning 

agents and their associated policies are 

implemented to enhance modularity-based 

community detection. The quality measure ( Q(G, 

c) ) is selected for comparison with modularity 

density. The discount factor ( \gamma ) plays a 

critical role in improving the accumulated 

reward, while an RL-greedy policy determines 

whether a selected action maximizes the 

improvement of the current community state ( C 

). 

2.  

In the second approach, a community detection 

framework based on interactive networks of high-

entropy alloys is proposed by integrating 

Louvain-based concepts with modified Particle 

Swarm Optimization (PSO) algorithms. In this 

method, lightweight H-beam community 

members are first selected based on chosen 

descriptors, and after preprocessing, communities 

are identified using the Louvain method and 

modified PSO techniques. The proposed 

framework consists of five main stages: 

1. Preprocessing the dataset to enable the 

application of machine learning 

algorithms. 

2. Computing content-based similarity 

among descriptors. 

3. Constructing the interactive network of 

high-entropy alloys. 

4. Calculating structural similarity between 

descriptors. 

5. Extracting communities by optimizing 

the modularity objective function. 

The dataset used in this study consists of 90 

lightweight H-beam alloys, from which 

communities are identified using the listed 

algorithms. A specific descriptor is selected for 

the lightweight H-beams, after which the 

proposed algorithms are applied to detect 

communities. As an example, the overall 

workflow comprises three main stages: data 

preparation, construction of the lightweight H-

beam interaction network, and application of 

machine learning algorithms for community 

extraction. Finally, modularity is employed as a 

quantitative measure to evaluate the quality of the 

detected communities. 

Data Normalization 

Normalization is applied when the input data 

values do not lie within a common range and have 

different scales, in order to prevent features or 

descriptors with large numerical values from 

dominating the overall system performance. In 

addition, normalization can reduce the effect of 

out-of-range scales and ensure that all inputs 

remain within a unified interval. 

In this study, min–max normalization is used to 

map feature values into the range [0, 1] using 

Equation (2). In this formulation, minA and 

maxA represent the minimum and maximum 

values of the features in set A, respectively. The 

original and normalized feature values are 

denoted by v and v′. As indicated in Equation (1), 

the minimum and maximum normalized values 

are 0 and 1. 

[1] 

 

Content-Based Cosine Similarity Metrics 
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Content-based cosine similarity measures the 

angle between two vectors and determines 

whether the selected vectors are considered 

aligned. As shown in the dataset in Appendix A, 

each feature of a single composition can be 

analyzed and compared with other compositions. 

The content-based cosine similarity between two 

compositions is calculated using the sum of the 

products of corresponding features divided by 

the product of the square roots of the sums of 

squares of each feature vector. In this formula, xi 

represents the i-th feature of the first 

composition, and yi represents the i-th feature of 

the second composition. 

[2] 

 

Jaccard Structural Similarity Metrics 

The Jaccard index is primarily used to compare 

the structural similarity of a dataset. The Jaccard 

similarity coefficient between two datasets is 

typically calculated as the number of shared 

features divided by the total number of features 

present in both sets. 

Since a graphical network representation of the 

interaction network is required to compute the 

Jaccard metric, the matrix obtained from 

content-based cosine similarity must first be 

examined with various thresholds to identify a 

suitable value. This ensures the creation of a 

proper network graph, allowing structural 

similarities to be measured based on the 

resulting visualization. In the present study, a 

threshold of 0.98 was selected to construct the 

network for analyzing content-based cosine 

similarity. 

The calculation of the Jaccard structural similarity is shown in Equation 3. 

[3] 

 

Jaccard Structural Similarity 

In Equation 3, vi and vj represent two nodes 

corresponding to lightweight H-beam 

compositions. The term ∣ 𝑁𝑖 ∩ 𝑁𝑗 ∣denotes the 

number of shared features between compositions 

vi and vj, while ∣ 𝑁𝑖 ∪ 𝑁𝑗 ∣represents the total 

number of features in both vi and vj. It is 

important to note that this metric can be applied 

to all pairs of shared features across the dataset. 

Alpha Coefficient (α) 

The calculation of content-based and structural 

similarity parameters results in two separate 

similarity matrices. To identify communities, a 

combined similarity matrix is required as input, 

which incorporates both types of similarities. The 

alpha coefficient (α) determines the relative 

influence of each similarity measure. 

Specifically, α controls the contribution of 

content-based similarities as well as the structural 

Jaccard similarity. The output of this phase is a 
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combined similarity matrix, which serves as input 

for the community detection algorithm. 

Community Detection 

Each community in the interaction network 

represents a group of alloys that are interrelated 

and exhibit similar behaviors or properties. 

Identifying these communities allows the 

analysis of functional relationships within the 

network and the grouping of similar compositions 

into coherent clusters. 

Theoretical Notation Definitions 

A complex network can be represented as a graph 

𝐺(𝑉, 𝐸), where 𝑉is the set of nodes and 𝐸is the 

set of edges. A network 𝐶(𝑣, 𝑒)is considered a 

subnetwork if 𝑣 ⊆ 𝑉and 𝑒 ⊆ 𝐸. 

Let 𝐴be the adjacency matrix. Two nodes are 

considered adjacent if an edge exists between 

them. Specifically, if a link exists between node 

𝑖and node 𝑗, then 𝐴𝑖𝑗 = 1; otherwise, 𝐴𝑖𝑗 = 0. A 

weighted network assigns a weight 𝑤to its edges, 

where 𝑤is a real number. Communities in 

networks are groups of nodes that are more 

densely connected to each other than to the rest of 

the network. Community detection is a key 

feature that can be used to extract valuable 

information from networks. 

Louvain Algorithm 

In scientific studies, content and their 

relationships are often represented as complex 

networks, in which the topology of the nodes is 

interconnected and organized either structurally 

or randomly. The Louvain algorithm is a 

metaheuristic method used to identify 

communities and groups within a graph. Each 

extracted community represents a group, and this 

algorithm is considered a bottom-up clustering 

method. To evaluate the quality of the detected 

communities, the modularity parameter is 

employed, and maximizing this parameter is of 

critical importance. 

The Louvain algorithm is regarded as one of the 

fastest and most effective methods for 

community detection, aiming to achieve 

maximum modularity over time. The algorithm 

operates in two phases, which are iteratively 

repeated and include the following steps: 

1. Assign each node to an initial community 

based on the current network structure. 

2. Merge potential neighboring nodes and 

evaluate the modularity gain for this 

transfer. 

3. Relocate nodes to communities based on 

the neighboring community that 

maximizes modularity. 

4. Repeat this process for all nodes until a 

stable state is reached. 

The Louvain algorithm operates efficiently, 

quickly computing modularity and minimizing 

the number of communities. The overall 

performance of the algorithm can be assessed 

using the modularity gain Δ𝑄, which is calculated 

based on node transfers from one community to 

another. The algorithm continuously applies 

iterative procedures to create and merge 

communities to achieve maximum network 

modularity. This iterative process is repeated 

several times to ensure all nodes are assigned to 

suitable communities, and the alternating phases 

continue until local modularity reaches its 

maximum and stable results are obtained. 

Community Detection Based on Particle 

Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) was 

introduced by Kennedy and Eberhart in 1995, 

inspired by the collective behavior of birds. PSO 

is considered one of the most important swarm 

intelligence algorithms, often capable of 

providing near-optimal solutions. In this method, 

the   movement of particles—represented as an 

array of nodes—is used to update each particle 

and detect communities within the network. The 

optimization process facilitates rapid 

convergence and reduces the reliance on the 

fitness function. During each update, the pbest 

(personal best) and gbest (global best) values are 

determined, and both the social interaction and 

learning of particles are considered. The 

algorithm also defines parameters such as 𝑡, 𝑤, 

𝑐1, 𝑐2, rand1, rand2, and 𝜌to control particle 

movement and community detection. 

[4.5.6] 
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Optimized PSO Algorithm and Group 

Learning 

Since communities are obtained independently of 

the ordering of lightweight H-beam compositions 

in the material interaction network 𝐿(𝐺), the 

resulting communities are optimized and smaller 

subsets of 𝐺. Identifying independent 

communities within a network requires 

discovering communities that are structurally 

independent. A linear graph corresponding to the 

developed Particle Swarm Optimization (PSO) 

algorithm, combined with group learning 

techniques—referred to as LEPSO—is 

employed to optimize the results obtained from 

linear graph partitioning. 

Community Detection Using Optimized PSO 

The linear graph for the chemical compositions of 

alloys is represented as 𝐿(𝐺) = ⟨𝑁, 𝐸⟩, where 

𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑘}is a subset of 𝐿(𝐺)and each 

node is described as 𝑋𝑖 = (𝑋𝑖1, 𝑋𝑖2, . . . , 𝑋𝑖𝑑)with 

𝑘 =∣ 𝑁 ∣. If the initial value 𝑋𝑖𝑗 = 𝑚is assigned, 

the results may indicate a relationship between 

two compositions 𝑒 = ⟨𝑛𝑗, 𝑛𝑚⟩and the particles 

𝑋𝑖, particularly when 𝑛𝑗and 𝑛𝑚belong to the 

same community in 𝐿(𝐺). 

To determine the initial community as an optimal 

type, each particle in the PSO is considered as an 

array of alloy compositions. In this framework, 

the adjacency matrix of the initial interaction 

network is used to represent connections between 

materials through connected nodes. Some 

potential challenges of this approach include 

random particle initialization and repeated 

updates of particle positions. Moreover, this issue 

may lead to particles representing links that did 

not previously exist. To address these problems, 

particles are recommended to be represented 

within a list of typical neighbors. 

The core idea of this approach is to use the 

distribution of neighbors for each node as a 

representative of an alloy composition, ensuring 

that newly introduced particles in the transfer or 

initialization process are valid. Additionally, the 

elimination of invalid particles and the prevention 

of locally suboptimal communities are achieved 

through iterative bipartitioning and automated 

community detection, representing key 

advantages of this PSO-based optimization 

method. 

Particle Fitness Function in Optimized PSO 

A well-defined community enables researchers to 

propose new and diverse quality indices for 

evaluating the potential benefits of a partition. 

The underlying assumption behind modularity is 

that the edge density of a cluster should be higher 

than the expected density of the subgraph, 

allowing nodes to be randomly connected. 

To complete the discretization process of the 

proposed algorithm, each node and its 

relationship with other nodes are analyzed 
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individually. First, the connections between the 

initial composition and other compositions are 

obtained, followed by the construction of the 

adjacency matrix. Finally, the particle fitness 

function, which determines the quality of 

communities in the final phase, is defined. This 

function is also referred to as modularity, as 

shown in Equation 7. 

[7] 

 

Particle Fitness and Partition Parameters 

In this equation, fit(Pi) represents the fitness 

value of particle 𝑃𝑖, and 𝑚is the number of 

communities found in the network partition 𝐶of 

graph 𝐺 = ⟨𝑁, 𝐸⟩. Here, 𝑙𝑐denotes the number of 

edges connecting nodes within community 𝑐 ∈ 𝐶, 

𝑑𝑐is the sum of degrees of nodes within 

community 𝐶, and ∣ 𝐸 ∣is the total number of 

edges in 𝐺. 

Particle Velocity and Position Update 

• Particle Velocity Update 

An optimized particle velocity update algorithm, 

called GbestGenerator, is employed to avoid local 

optima. This method leverages a voting-based 

clustering strategy to fully utilize the valuable 

hidden community patterns found in less efficient 

particles and in the gbest values. 

If the gbest value does not improve over 

consecutive iterations 𝑇𝑚𝑎𝑥, indicating that the 

swarm is trapped in a local optimum, clusters of 

particles within the MPS (Most Promising 

Swarm) are created. This is achieved by selecting 

all gbest particles from the last 𝑇𝑚𝑎𝑥iterations, as 

well as the corresponding consecutive particles, 

to generate a suitable combination of particles for 

producing a new gbest. 

Accordingly, each particle can potentially have 

both a minimum and a maximum velocity. 

Equation 4 illustrates this concept, and the inertia 

coefficient, denoted as 𝑤, is considered crucial in 

the execution of particle velocity updates. The 

strategy for adjusting 𝑤can be effectively 

expressed using Equation 8, as described below. 

 

Inertia Coefficient Adjustment 

In this context, 𝑤𝑚𝑎𝑥and 𝑤𝑚𝑖𝑛represent the 

initial and final inertia coefficients, respectively. 

𝑇𝑚𝑎𝑥denotes the maximum number of iterations, 

and 𝑡indicates the current iteration. As shown in 

Equation 10, at the initial stage (𝑡 = 0), both 

𝑤𝑚𝑎𝑥and 𝑤𝑡are considered equal. As 

𝑡approaches 𝑇𝑚𝑎𝑥, 𝑤𝑡gradually decreases toward 

𝑤𝑚𝑖𝑛. 

Furthermore, due to the convergence behavior of 

the algorithm in the early stages, larger inertia 

coefficients are required to allow faster particle 

movement. In later stages, smaller coefficients 

are assigned to particles to gradually increase 

their overall stability. 

 

Particle Position Update 

Based on Equation 5, the components of the 

position vector were initially assigned values of 0 

or 1, which is not ideal for representing particles 

relative to their neighbors. Accordingly, the 

previous positions of particles correspond to the 

prior community, while the new positions can 

represent the final community assignments. 
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Thus, the value of 𝑋𝑖𝑗for particle 𝑖is obtained as 

an integer within the range 1to deg(𝑛𝑖), meaning 

𝑋𝑖𝑗 ∈ {1,2, . . . ,deg(𝑛𝑖)}. This adjustment 

fundamentally improves the PSO algorithm and 

enhances the system’s search capabilities. 

Particle position updates are carried out 

according to Equations 9 and 10, which provide a 

detailed description of the update mechanism. 

 

Particle Position Update Based on 

Neighborhood Distribution 

In this context, 𝑘 = rand × deg(𝑛𝑗), where 𝑘 ≠

𝑋𝑖𝑗(𝑡), deg(𝑛𝑗)represents the degree of node 𝑛𝑗, 

and 𝜌is a user-defined threshold. It is important 

to note that the generated position values are 

based on the degree distribution, indicating that if 

the value of node 𝑣𝑗among its neighbors is higher, 

sig(𝑉𝑖𝑗(𝑡 + 1))will always be greater than 𝜌. 

Consequently, neighbors of nodes should be 

moved to the currently selected neighbors. 

Therefore, the function sig()in Equation 11 has 

been modified to address this issue. 

Particle positions are likely to change gradually 

through the particle velocity reduction method, 

allowing the PSO algorithm to progressively 

converge toward a global optimum. 

Artificial Intelligence Techniques 

Reinforcement Learning (RL) is a subfield of 

artificial intelligence that addresses goal-directed 

agent problems in uncertain environments. In the 

RL model, there are two main components: the 

agent and the environment. The agent observes 

the environment, performs actions to modify it, 

and receives rewards. The ultimate objective of 

the agent is to maximize the cumulative reward. 

In this study, a Q-Learning approach is employed. 

The experiments include four implementations of 

community detection algorithms, each based on 

different detection strategies. Other 

implementations can also be integrated with the 

proposed solution. These include the Leading 

Eigenvector Newman algorithm, Walktrap, Label 

Propagation, and Multilevel algorithm, which are 

used for eigenvalue computation, community 

identification, and network modularity 

optimization. 

Reinforcement Learning and Learning Agents 

Reinforcement learning is an AI method in which 

an agent performs actions in the environment and 

receives numerical rewards. The agent observes 

the environment, selects actions that lead the 

environment to a new state, and aims to maximize 

the total reward. This process relies on systematic 

trial-and-error and learning algorithms. 

One RL approach, temporal-difference learning, 

gradually gathers information about the best 

action in each state. Various strategies can be used 

to select actions. With online learning capability, 

agent performance in multi-agent systems 

improves, referred to as multi-agent 

reinforcement learning (MARL). In complex 

environments, designing agents from scratch may 
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be impossible or difficult; therefore, multiple RL 

agents interact with the dynamic environment to 

learn. At the end of each iteration, the 

environment evaluates the outcomes and 

compares agent performances, then agents update 

their actions based on these results. 

Multi-Agent Reinforcement Learning 

Community Detection (MARLCD) 

The MARLCD algorithm is designed to detect 

communities in complex networks. Here, RL 

agents iteratively attempt to find connected 

communities over MNLI repetitions. The 

algorithm involves 𝑚𝑎independent agents, each 

searching for communities in every round. Based 

on the evaluation of results, agents update their 

action probability vectors. 

The community detection process includes: 

1. Selecting unvisited nodes. 

2. Creating paths for exploration. 

3. Performing actions until predefined 

conditions are met. 

4. Updating action probability vectors. 

5. Removing nodes from the current set. 

Finally, the detected communities are evaluated. 

Their quality is computed using a normalized 

cut-based objective function, which assesses 

community quality based on intra-community 

similarity and inter-community differences, 

aiming to identify the best set of communities. 

Below, the pseudocode of the MARLCD 

algorithm for community detection in complex 

networks is presented. 

1. For t = 1 to MNLI 

2. 𝐺′ ← 𝐺 

3. K ← 1 

4. Repeat // making k community 

5. 𝑣𝑖 ← 𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑣𝑒𝑟𝑡𝑒𝑥 𝑜𝑓𝐺′  

6. 𝑐𝑘 ← 𝑣𝑖 

7. 𝐿𝑡 ← 𝑣𝑖 

8. 𝑊ℎ𝑖𝑙𝑒 (𝑑𝑖𝑛(𝑐𝑘) > 𝑑𝑜𝑢𝑡(𝑐𝑘)𝐴𝑁𝐷 |𝑎𝑖| ≠ 0)𝐷𝑜 

9. //Finding 𝑘𝑡ℎ community 

10. 𝑎𝑗 ←an action selected by agent using 𝑝𝑖 

11. 𝑣𝑖 ← vertex correspond to 𝑎𝑗 

12. IF(𝑑𝑖𝑛(𝑐𝑘  ∪ 𝑣𝑖) > 𝑑𝑖𝑛(𝑐𝑘) 𝐴𝑁𝐷 𝑑𝑜𝑢𝑡(𝑐𝑘  ∪ 𝑣𝑖) <  𝑑𝑜𝑢𝑡(𝑐𝑘)𝑇ℎ𝑒𝑛 

13. 𝑐𝑘 ← 𝑐𝑘 ∪ 𝑣𝑖 

14. 𝐿𝑡 ← 𝐿𝑡 ∪ 𝑣𝑖 

15. 𝑣𝑖 ← 𝑣𝑗  
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16. 𝐸𝑙𝑠𝑒 

17. 𝑎𝑗 of agent is deactivated until next round 

18. End If 

19. End While 

20. 𝐺′ ← 𝐺′\𝐶𝑘 

21. 𝑘 ← 𝑘 + 1 

22. Until (|𝐺′| ≠ 0)// making k community 

23. 𝑁𝐶(𝐶𝑡) =
1

𝑘
𝛴𝑖=1

𝑘 𝑐𝑢𝑡(𝐶𝑖,𝐶̅𝑖)

𝑣𝑜𝑙(𝐶𝑖)
 

24. If (𝑁𝐶(𝐶𝑡) < 𝑁𝐶(𝐶𝑡−1)) 

25. reward the selected actions along the path 𝐿𝑡 

26. End If 

27. Next // end of each round 

       28.Return 𝐶𝑡 

Community Reward and Agent Evaluation 

If the normalized cut value (NCC) in the current 

round is less than or equal to the normalized cut 

value in the previous round (line 25), the actions 

selected along the path 𝐿by the agent receive a 

reward according to the reinforcement learning 

algorithm described in the previous section 

(Equation 2, line 26). 

After each of the 𝑚𝑎agents executes a round of 

the algorithm and evaluates the results, if the 

normalized cut value of a given agent in the 

current round is lower than the normalized cut 

values of all agents up to the current round, this 

agent is considered a successful agent. All 

actions selected by this successful agent along the 

path are rewarded in other agents as well, 

according to the reinforcement learning scheme 

(Equation 2). 
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The proposed algorithm is executed uniformly for MNLI rounds for each agent. 

Table 1. Information on Networks Used in Experimental Studies 

Description Number of 

Edges 

Number of 

Nodes 
Network 

 Karate Club Network 

[49] 

78 34 Karate 

Dolphins Network [50] 159 62 Dolphins 

U.S. Political Books 

Network [51] 
441 105 Books 

U.S. College Football 

Teams Network [17] 
615 115 Football 

LFR Synthetic Network 

[32] 

 

38160 1000 LFRI 

LFR Synthetic Network 250000 5000 LFR2 

 

Evaluation Metrics 

To evaluate the performance of MARLCD and 

other community detection algorithms used for 

comparison, two commonly employed metrics 

for assessing the quality of detected community 

sets in networks are utilized. These metrics are 

defined as follows: 

𝑄 =
1

2𝑚
𝛴𝑐∈𝑝𝛴𝑉𝑖,𝑉𝑖∈𝐶[𝐴𝑖,𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
 

 

 

Where A is the adjacency matrix, such that 𝐴𝑖,𝑗 = 1if there is an edge between vertices 𝑖and 𝑗, 

and 0 otherwise. 𝑘𝑖 = ∑ 𝐴𝑖,𝑗
𝑗

denotes the degree of vertex 𝑖, and 𝑚is the total number of edges 

in the network. The summation is performed over all pairs of vertices belonging to the 

community 𝐶of the partition 𝑃. 

 

𝑀𝐼(𝐴, 𝐵) =

−2𝛴𝑖=1
𝑐𝑎 𝛴𝑗=1

𝑐𝑏 𝐷𝑖,𝑗log (
𝐷𝑖,𝑗n
𝐷𝑖,𝑗

)

𝛴𝑖=1
𝑐𝑎 𝐷𝑖log (

𝐷𝑖

𝑛 )𝛴𝑗=1
𝑐𝑏 𝐷𝑗log (

𝐷𝑗

𝑛 )
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Normalized Mutual Information (NMI) 

Normalized Mutual Information (NMI) is also 

one of the important metrics for evaluating the 

results of community detection algorithms. It is 

used to estimate the similarity between the 

communities detected by an algorithm and the 

actual communities. Suppose 𝐴and 𝐵are two 

partitions of a network, representing the number 

of communities in 𝐴and 𝐵, respectively. Let 

𝐶denote the number of communities in 𝐵. 𝐷is the 

confusion matrix, and 𝐷𝑖𝑗indicates the number of 

nodes in community 𝑖of 𝐴that also appear in 

community 𝑗of 𝐵. 𝐷𝑖⋅is the sum of the 𝑖-th row of 

𝐷, and 𝐷⋅𝑗is the sum of the 𝑗-th column of 𝐷. The 

definition of NMI (A, B) is as follows: 

NMI takes a value between 0 and 1, where higher 

values indicate that communities 𝐴and 𝐵are more 

similar. This metric is commonly used for 

networks for which we have prior knowledge of 

the actual communities. 

Parameter Settings of MARLCD 

The parameter values for MARLCD are 

determined based on a series of experiments. The 

chosen values are such that the best results are 

obtained in terms of both solution quality and 

computation time. Table 2 shows the parameter 

settings of the proposed approach. Nevertheless, 

below, the reasons for selecting the values of 

some key parameters are examined based on the 

results of certain experiments. 

When developing algorithms based on intelligent 

agents, selecting appropriate learning parameters 

has a significant impact on the algorithm’s 

performance. For example, the learning rate 

parameter is one of them. In other words, 

successful learning in reinforcement learning 

algorithms strongly depends on the precise tuning 

of learning parameters. Achieving high-quality 

results and good performance is critically related 

to proper parameter adjustment. 

Figure 3 shows the results of executing the 

MARLCD algorithm with different learning rate 

values. In this figure, modularity values for the 

Karate and Dolphins networks are illustrated with 

learning rates varying from 1 to 100. From the 

chart, it can be concluded that the performance of 

the MARLCD algorithm fully depends on the 

choice of learning rate. Typically, lower learning 

rates lead to better algorithm performance in the 

networks under study, while higher values result 

in poorer performance. According to the obtained 

results, within a certain range of values (0.15–

0.35), the algorithm shows better performance. 

Consequently, the learning rate for agents in the 

MARLCD algorithm is set within the range [0.15, 

0.35), with each agent independently selecting a 

value within this range. 

Table (2). Parameter settings for the MARLCD approach 

Concept Value Parameter 

Reward [0.8, 1.3] 𝑟𝑑 

Learning rate [0.15, 0.35] 𝑙𝑟 

Number of agents 5 𝑚𝑎 

Maximum number of learning iterations 2000 𝑀𝑁𝐿𝐼 
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Figure 1: Results of executing MARLCD on the 

Karate and Dolphins networks with different 

learning rates based on value and modularity. 

In Figure 4, when the reward parameter 𝑟𝑑is 

around 1, better results are observed. However, 

by decreasing it below 1 and toward 0, the 

algorithm’s performance drops significantly. 

Similarly, increasing it to values above 1 has an 

adverse effect on the algorithm’s performance. 

Therefore, the reward parameter 𝑟𝑑for agents in 

MARLCD is set within the range [0.8, 1.3), with 

each agent independently selecting a value within 

this range. 

 

 

Figure 2: Results of MARLCD on the Karate and 

Dolphins networks with different reward 

parameters based on value and modularity 𝑄. 

Experiments on Real Networks 

Figure 3 shows the best result obtained by 

MARLCD on the Dolphin network. According to 

Figure 3, the number of clusters found by the 

algorithm is 2, which matches the actual structure 

of this network. 

In this section, the results of the proposed 

algorithm are compared with several well-known 

community detection methods, including GA-Net 

by Pizzuti, Meme Net by Gong et al., LPA by Liu 

and Murata, and MAGA-Net by Li and Liu. The 

comparison is based on modularity 𝑄and NMI 

metrics on real-world networks. The results 

obtained by different methods according to the 

majority criterion are presented in Table 3. 

According to Table 3, for the Books, Karate, and 

Football networks, the proposed algorithm shows 

better or at least comparable performance 

compared to other methods based on the average 

modularity 𝑄𝑎𝑟𝑠. For the Dolphins network, the 

results of MARLCD outperform Meme Net, GA-

Net, and LPA, while slightly lower than MAGA-

Net, indicating that the results are in a similar 

range. The average 𝑄𝑎𝑟𝑠obtained by MARLCD is 

approximately 12.33% higher than the average 

𝑄𝑎𝑟𝑠obtained by the three other algorithms. 

From the perspective of the maximum modularity 

𝑄𝑚𝑎𝑥, the proposed method achieves higher 

quality in all four networks compared to the other 

methods and produces the best results. This 

indicates that MARLCD is capable of detecting 

appropriate communities. 

Furthermore, the computation time of the 

proposed algorithm is lower in all four networks 

(Football, Books, Dolphins, Karate) compared to 

LPA and MAGA-Net. The computation times for 

GA-Net and Meme Net were not reported. 
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Figure 3: Two communities detected by MARLCD in the Dolphins network. 

 

Table 3. MARLCD and GA-Net Algorithms 
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Based on the majority criterion, the results 

obtained from executing the MARLCD algorithm 

and GA-Net, Meme-Net, and MAGA-Net on real 

networks according to the NMI metric are 

reported in Figure 4. This metric is commonly 

used to measure the similarity between the 

communities detected by the algorithms and the 

actual communities. As shown in Figure 4, the 

communities detected by MARLCD have higher 

similarity to the actual communities compared to 

the three other algorithms, except for the result 

obtained by MAGA-Net on the Dolphins 

network. Across the other networks, MARLCD 

shows the closest match to the real communities. 

The average NMI obtained by MARLCD is 

approximately 9.85% higher than the average 

NMI obtained by the three other algorithms. In 

other words, the communities detected by the 

proposed algorithm are, on average, 9.85% more 

similar to the actual communities compared to 

Meme-Net, GA-Net, and MAGA-Net. 

 

Figure 4: Comparison of the average NMI values obtained by MAGA-Net, Meme-Net, GA-Net, 

and MARLCD across four networks: Football, Books, Dolphins, and Karate. 

Experiments on Synthetic Networks 

To further evaluate the performance of the 

MARLCD algorithm, synthetic networks from 

the LFK (LFR benchmark) dataset were used. We 

generated networks of 1,000 and 5,000 nodes. 

The LFR synthetic networks, proposed by 

Lancichinetti et al., are widely used for 

systematically assessing the quality of 

community detection algorithms. In the 

experiments, six networks of 1,000 nodes (LFR1) 

were generated with mixing parameter values of 

0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, and six networks 

of 5,000 nodes (LFR5) were generated with 12 

similar mixing parameter values. The mixing 

parameter 𝜇represents the fraction of edges a 

node shares outside its community versus within 

its own community. As the mixing parameter 

increases, community detection becomes more 

difficult. Other network parameters for the 

generated LFR networks were set as follows: 

average node degree 𝐾 = 15, maximum node 

degree 𝑚𝑎𝑥 = 50, minimum community size 

𝑚𝑖𝑛 = 10, and maximum community size 

𝑚𝑎𝑥 = 50. 

Figures 7 and 8 show the average NMI values 

obtained from running MARLCD, MAGA-Net, 

LPA, Meme-Net, and GA-Net on these networks. 

As shown in Figure 5, for networks with small 

mixing parameter values, all algorithms produced 

similar and high NMI values, indicating 

acceptable performance in this category of 

networks. However, as the mixing parameter 

increases, leading to more complex networks, the 

NMI values for all algorithms decrease. The 

figure also shows that MARLCD, LPA, and 

MAGA-Net perform well on 1,000-node LFR 

networks, with NMI values ranging from 

approximately 1 to 0.85 for mixing parameters 

from 1 to 16, demonstrating the high similarity 

between the detected communities and the true 

communities. In contrast, GA-Net and Meme-Net 

show weaker performance, especially at higher 

mixing parameter values. Overall, the average 

NMI obtained by MARLCD is approximately 

21.71% higher than the average NMI obtained by 

the other four algorithms. These results highlight 

the weakness of GA-Net and Meme-Net in large-

scale networks, particularly for high mixing 
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parameter values, while LPA, MARLCD, and 

MAGA-Net can produce reliable results even for 

very large networks. As mentioned earlier, 

increasing the mixing parameter from 0.1 to 16 

increases the difficulty of community detection. 

Despite this, MARLCD maintains strong 

performance even at high mixing parameter 

values, confirming the high quality of the 

proposed approach. The average NMI obtained 

by MARLCD is approximately 21.89% higher 

than that of the other four algorithms. 

 

Figure (5) illustrates the comparison of average 

NMI values obtained by applying LPA, 

MemeNet, GA-Net, and MARLCD/MAGA-Net 

algorithms on synthetic LFR networks with 1000 

nodes (LFR1), for combined parameter values 

ranging from 0.1 to 0.16. 

 

 

Figure (6) presents a comparison of the average NMI values obtained by applying LPA, Meme-

Net, GA-Net, and MARLCD/MAGA-Net algorithms on synthetic LFR networks with 5000 

nodes (LFRI), with a combined parameter value of 2 in the range 0.1–0.16. 

Performance Evaluation of MARLCD 

Based on the evaluations and results reported in this section, MARLCD demonstrates better and 

more stable performance compared to other well-known community detection algorithms. It 

converges quickly, produces consistent results for both small and large-scale networks, and can 

manage networks with up to 5,000 nodes. 

Experiments and Discussion 

To validate our approach, several experiments 

were conducted. The algorithms mentioned 

above, each implementing a different community 

detection strategy, were used to implement the 

reinforcement learning (RL) framework. The 

experiments utilized both a synthetic network 

generated using the Erdős–Rényi model for 



International Journal of Innovative Research In Humanities 

Vol.5, NO.2 , P:185-207 

Received: 10 January 2024  

Accepted: 18 January 2026 

 
 

 
 

201 
 

validating the RL implementation and a real-

world dataset from the High Energy Physics 

Theory citation network available in the SNAP 

Project. Sosa and Zhao evaluated existing 

community detection solutions using the iGraph 

package across various scenarios. Inspired by this 

evaluation, the reinforcement learning 

framework proposed in this study uses iGraph to 

implement different community detection 

algorithms. To assess the quality of the 

community structure, modularity scores were 

used, as described in Section 3. The OpenAI Gym 

library was used to implement the RL 

environment, while iGraph managed network 

data. A null model was first used as the baseline, 

where a policy selected completely random 

actions (𝜖 = 1). This policy is purely random, 

and the results are shown in Figure 3. This null 

model serves as a reference for comparison. 

Subsequently, a greedy policy was adopted to 

balance exploration and exploitation, and SARSA 

was used to update the policy, primarily due to the 

unpredictable nature of future states in a dynamic 

network. Executing the RL implementation on 

the High Energy Physics Theory citation network 

produced a reward accumulation graph shown in 

Figure 2, illustrating the evolution of cumulative 

rewards over episodes. 

Application to Lightweight H-Beam Alloy 

Interaction Networks 

To further assess the algorithm, MARLCD was 

applied to a weighted interaction network of 

lightweight H-beam alloys. The network 

considers feature similarity between alloys, 

where link weights represent the degree of 

similarity. Initially, the interaction network was 

constructed based on compositional and 

structural descriptor similarity. All nodes were 

connected to form a fully connected graph with 

90 nodes representing different alloy 

compositions, as detailed in Appendix A. Each 

node was connected to every other node with 

3,968 edges, forming an undirected interaction 

network. The degree distribution of the network, 

representing the probability distribution of node 

degrees, is shown in Figure 3, with an average 

degree of 14.20. Next, as shown in Figure 4, an α 

coefficient of 0.9 and a threshold of 0.6 were 

applied to the network to remove weak and less 

similar connections. The resulting interaction 

network contained 632 edges while preserving 

relationships between the 90 nodes. Node sizes in 

Figure 4 reflect the degree of each node. 

Community Detection Results 

Applying the Louvain algorithm to the 

lightweight H-beam alloy network, as shown in 

Figure 5, resulted in 13 communities with an 

overall modularity of approximately 0.71. Each 

community is represented by a unique color, and 

all compositions within each community are fully 

connected. The Particle Swarm Optimization 

(PSO) algorithm was also applied to the same 

network over 100 iterations, extracting 13 

optimized communities with improved 

modularity of approximately 0.89, as shown in 

Figure 6. Since nodes in each community are not 

connected to nodes in other communities, the 

PSO-optimized communities have higher-quality 

modularity. Analysis of each community shows 

that neighbors of each alloy composition share 

the same phase label and similar elements. In this 

study, modularity was used as the main metric to 

evaluate community quality. If the number of 

edges within a community is no greater than a 

random graph, the modularity is effectively zero. 

Maximum modularity occurs when all internal 

nodes are fully connected with no external edges. 

Modularity also allows comparison of 

communities across different algorithms. Since 

other algorithms may not produce identical 

results, many metrics cannot evaluate community 

quality consistently. Using the hierarchical 

Louvain method, modularity trends during the 

community splitting or merging process can be 

analyzed, with the maximum value representing 

the best outcome. Modularity ranges from -1 to 1, 

measuring the density of internal connections 

relative to inter-community connections. A 

modularity between 0.3 and 0.7 indicates a strong 

community; values closer to 1 denote very high-

quality communities. Empirical results show that 

both algorithms achieve modularity above 0.7. 

Community Analysis and Practical 

Implications 

The extracted communities demonstrate high 

quality and accuracy, confirmed via modularity 

metrics. Table 1 summarizes community quality 

results obtained using the Louvain and PSO-
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optimized algorithms. In Louvain, modularity 

remained constant at 0.71, while in PSO, 

modularity increased from 0.87 to 0.89 over 30 

iterations, remaining stable after 150 iterations. 

Community detection in lightweight H-beam 

networks provides practical insights: similar-

phase alloys within the same community exhibit 

similar behaviors and properties. Once 

communities are identified, properties such as the 

maximum number of elements in an alloy can be 

predicted. Phase prediction using machine 

learning techniques is also possible; unknown-

phase compositions can be inferred from other 

compositions in the same community. Table 2 

shows phase counts per community and 

prediction accuracy, with Louvain and PSO 

achieving approximately 88% and 93% accuracy, 

respectively. 

Related Work 

Several studies have explored deep reinforcement 

learning in recommender systems. Table 4 

provides a summary and analysis of key works in 

this domain. 
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Table 4. Analysis of Related Works 

Row Year Authors Article Title Findings 
Advantages & 

Limitations 

1 2021 

Chen, Y. Y.; Hong, 

U. T.; Niwattanakul, 

S. 

Machine 

Learning 

Approach for 

Community 

Detection in a 

High-Entropy 

Alloy Interaction 

Network 

Using community 

detection and 

optimization 

algorithms, the 

communities of 

high-entropy alloys 

(HEAs) were 

identified with 

greater accuracy. 

This study applies 

modern community 

detection and machine 

learning methods to 

HEAs using Louvain 

and PSO algorithms. 

The approach can 

improve prediction and 

analysis of new alloy 

properties and non-

laboratory scenarios. 

Limitations: requires 

specific data and 

conditions; further 

analysis and validation 

are needed for industrial 

and material research 

applications. 

2 2024 

Wasserman, S.; 

Faust, K.; Csardi, 

G.; Nepusz, T. 

Towards 

Modularity 

Optimization 

Using 

Reinforcement 

Learning for 

Community 

Detection in 

Dynamic Social 

Networks 

Reinforcement 

learning was 

applied to optimize 

modularity in 

dynamic social 

network 

community 

detection. 

Comparative 

results show the 

approach is 

acceptable and 

effective. 

Advantages: 

Demonstrates success of 

RL-based community 

detection and 

comparable evaluation 

metrics. Limitations: 

May have limited 

adaptability; RL 

implementation requires 

careful design to 

improve results. 
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Row Year Authors Article Title Findings 
Advantages & 

Limitations 

3 2024 

Mir Mohammad 

Alipour & Mohsen 

Abdolhosseinzadeh 

A Novel 

Algorithm for 

Community 

Detection Using 

Multi-Agent 

Reinforcement 

Learning 

A new algorithm 

was proposed and 

evaluated for 

community 

detection. 

Performance, 

speed, and stability 

were assessed, 

showing an 

improvement of 

21% over similar 

algorithms. 

Advantages: High 

accuracy and fast 

detection of 

communities. 

Limitations: Handling 

incomplete information 

and constraints may 

negatively impact 

performance. 

 

Conclusion 

In this paper, a novel algorithm for community 

detection in complex networks using multi-agent 

reinforcement learning (MARL) has been 

proposed. The algorithm, leveraging the distinct 

characteristics of agents and their interactions, is 

capable of identifying highly dense local 

communities. Empirical studies were conducted 

on four real-world networks as well as a set of 

LFR synthetic networks, demonstrating that the 

proposed algorithm significantly outperforms the 

compared methods. This approach efficiently 

identifies optimal partitions with high speed, 

accuracy, and stability. The study specifically 

applied this method to detect communities in 

lightweight H-beam alloy compositions (HEAs 

without floating elements) and showed that the 

algorithm can be extended to other areas in 

materials science. This approach can assist in 

identifying useful alloy compositions for 

industrial applications and enable accurate 

predictions of future phases. Finally, the use of 

reinforcement learning to optimize community 

detection solutions in dynamic social networks 

has been shown to be effective and highlights the 

flexibility of reinforcement learning for 

addressing more general problem-solving tasks in 

community detection. 
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